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Abstract. We study the magnetic susceptibility of a conventional d.c. SQUID adopting a description
based on the reduced two-junction interferometer model. In this context, considering the parameter β as
a perturbation parameter, it is possible to derive an analytical expression for magnetic susceptibility with
respect to the externally applied magnetic flux. Numerical simulations on the complete model has been
carried out in order to confirm the analytical results.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 85.25.Dq
Superconducting quantum interference devices (SQUIDs)

1 Introduction

Superconducting Quantum Interference Devices
(SQUID’s) [1] are very interesting dynamical sys-
tems “per se”. The simplest description of the magnetic
response of a conventional d.c. SQUID relies upon the
two-junction interferometer model with β = 0. According
to this model the time evolution of the average super-
conducting phase ϕA of the two junctions in the device
can be expressed by the following non-linear differential
equation in the framework of the RSJ model [2]:

dϕA

dτ
+ (−1)n cos (πΨex) sin (ϕA) =

iB
2

, (1)

where τ is the normalized time variable, n is an integer,
Ψex is the applied magnetic flux normalized to the elemen-
tary flux quantum Φ0, and iB is the bias current normal-
ized to the maximum Josephson current IJ of both junc-
tions. When discussing the dynamical behaviour of d.c.
SQUID’s containing one π-junction [3] the above model is
modified by making the following substitution [4]:

Ψex → Ψex +
2k + 1

2
, (2)

where k is an integer. Equation (1) is formally iden-
tical to the dynamical equation of a single over-
damped junction having maximum Josephson current
equal to IJ |cos (πΨex)| (conventional d.c. SQUID) or to
IJ |sin (πΨex)| (π-SQUID). The present analysis can thus
be extended to π-SQUID’s.

Even though most of the electrodynamic properties of
d.c. SQUID’s can be captured by equation (1), a recently
developed more detailed model [5] takes explicitly account
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the effects due to finite β values (we here set β = LIJ

Φ0
, L

being the inductance of a single loop branch). This model
goes under the name of reduced two-junction interferom-
eter model and considers, to first order in the parameter
β, the time evolution of both ϕA and the normalized flux
Ψ linked to the SQUID as follows:

dϕA

dτ
+ (−1)n cos (πΨex) sin (ϕA)

+ πβ sin2 (πΨex) sin (2ϕA) =
iB
2

, (3a)

Ψ = Ψex − 2 (−1)n β sin (πΨex) cos (ϕA) . (3b)

In equation (3a) we notice the appearance of an additional
second harmonic term as a consequence of a more accu-
rate determination of the flux Ψ in equation (3b). Natu-
rally, equations (3a, 3b) reproduce the β = 0 two-junction
interferometer model for null values of the parameter β.
Finally, by simply making the substitution for Ψex given
in equation (2), equations (3a, 3b) reduce to an analo-
gous set of equations for π SQUID’s [6]. In the present
work we start by noticing that adoption of the reduced
two-junction interferometer model makes it possible to an-
alytically calculate the expression of the susceptibility of
conventional d.c. SQUID to first order in the parameter β.
Numerical integration of the complete model (without any
approximation) is performed to confirm the analytic pro-
cedure.

2 Magnetic susceptibility of conventional d.c.
SQUID’s

In the reduced two-junction interferometer model, the dy-
namics of the average value of the superconducting phase
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difference ϕA across the two branches of a conventional
d.c. SQUID is governed by a first-order non-linear differ-
ential equation (Eq. (3)), while the normalized total mag-
netic flux Ψ is fully determined once we know the expres-
sion of ϕA according to equation (3b). It is thus possible
to derive the analytic expression of the d.c. magnetic sus-
ceptibility χ in the following form:

χ =
Ψ − Ψex

Ψex
= −2πβ

sin (πΨex)
πΨex

cos ϕ̃A, (4)

where ϕ̃A represents the average phase difference across
the electrodes in the steady state. We can observe that
for β = 0 we have a magnetic susceptibility exactly equal
to zero, while for small but finite values of β we are able
to study the dependence of χ on the externally applied
flux. We start by noticing that in the running state
(when a voltage different from zero is detected across
the device), ϕ̃A is a function of time and so does the
magnetic susceptibility. We can evaluate the time average
of χ, which is found to be a quantity of higher order than
one in β. Besides this trivial case, we are interested in
the description of the system magnetic response in the
zero voltage-state (a null voltage is observed across the
system, while a non-zero current is present). For this
state we could distinguish two cases: Case a) iB = 0;
case b) iB �= 0.

Case a)

In the zero-voltage state and for iB = 0, ϕ̃A is the stable
solution of the stationary portion of equation (3a):

(−1)n cos (πΨex) sin (ϕA) + πβ sin2 (πΨex) sin (2ϕA) = 0,
(5)

to be solved in the interval [0, 2π[ with respect to the vari-
able ϕA. The above equation has the following solutions:
ϕ̃A = 0 and ϕ̃A = π, if |cos(πΨex)|

2πβ sin2(πΨex) > 1; ϕ̃A = 0, ϕ̃A = π,

cos−1
(

(−1)n cos(πΨex)
2πβ sin2(πΨex)

)
and 2π − cos−1

(
(−1)n cos(πΨex)
2πβ sin2(πΨex)

)
, if

|cos(πΨex)|
2πβ sin2(πΨex) < 1. Therefore, we must adopt a rule which
allows us to choose between these solutions.

Let us first study the case with n even. By analysing
the sign of ϕ̇A when |cos(πΨex)|

2πβ sin2(πΨex)
> 1, we can notice that,

for cos (πΨex) > 0, the steady state is reached for ϕ̃A = 0,
ϕ̃A = π being an unstable solution. For cos (πΨex) < 0, on
the other hand, the stationary stable solution is obtained
for ϕ̃A = π, while ϕ̃A = 0 is unstable. Summarising, we
can write the analytical expression of χ as follows:

χ =

{
−2πβ sin(πΨex)

πΨex
if cos (πΨex) > 0

2πβ sin(πΨex)
πΨex

if cos (πΨex) < 0
, (6)

while for cos (πΨex) = 0 both values of the susceptibility
χ given in equation (6) are possible.

By analysing now the sign of ϕ̇A when
|cos(πΨex)|

2πβ sin2(πΨex)
< 1, we find that both states corre-

sponding to ϕ̃A = 0 and ϕ̃A = π are stable. In these
regions, centred at half-integer values of the applied flux

Fig. 1. Fixed points diagram for the system described by
equation (3a) with n even, β = 0.05 and iB = 0. Sta-
ble solutions are described by full lines, while unstable ones
are described by dashed lines. Notice appearance of bistabil-

ity in the interval −
(√

1

16π2β2
+ 1 − 1

4πβ

)
< cos (πΨex) <

(√
1

16π2β2
+ 1 − 1

4πβ

)
.

and with amplitude about equal to 4β, the magnetic
states are bistable and thus the magnetic response of the
device depends upon the system history. In order to show
all possible states of the system, following Strogatz [7],
in Figure 1 we represent the stationary solutions as a
function of the normalized applied flux.

For n odd we can adopt a similar analysis. By doing
so, we notice that the system behaves as in the n even
case including field values for which |cos(πΨex)|

2πβ sin2(πΨex)
< 1

where, once again, bistability is present.

Case b)

Considering equation (3a), we can notice that, for
cos (πΨex) = 0 and for |iB| > 2πβ, the variable ϕA varies
with respect to time, so that magnetic susceptibility
becomes an oscillating quantity. It can be shown, by
means of direct calculation, that the time average of χ is
zero. If we now consider the case in which cos (πΨex) �= 0,
we can solve perturbatively the stationary portion of
equation (3a) and write the following relation:

sin (ϕ̃A) =
iB

2 cos (πΨex)
+ o (β) , (7)

where only the zero-th order term is shown, given that the
susceptibility already contains a factor β in equation (4).
Proceeding as before, we can write, to first order in β,
the expression for d.c. magnetic susceptibility in this case
as follows:
χ=

{−2πβ sin(πΨex)
πΨex

√
1−

(
iB

2cos(πΨex)

)2

if cos (πΨex)>0

2πβ sin(πΨex)
πΨex

√
1−

(
iB

2cos(πΨex)

)2

if cos (πΨex)<0
. (8)

It’s worth noting that equation (8) defines a real sus-

ceptibility function only for 1 −
(

iB

2 cos(πΨex)

)2

≥ 0, i.e.,
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only when the system is in the zero-voltage state. When
this condition is broken, magnetic susceptibility becomes
an oscillating null-average function. Notice also that, for
iB = 0, equation (8) reduces to equation (6). When
cos (πΨex) = 0, considering the stationary portion of equa-
tion (3a), we obtain, for |iB| < 2πβ, the following four
solutions:

cos (ϕ̃A) = ±

√√√√√1 ±
√

1 −
(

iB

2πβ

)2

2
, (9)

of which two are stable and two unstable. The two stable
solutions correspond to two possible magnetic states of
the system giving the following values for χ:

χ = ± 4β

2k + 1

√√√√√1 +

√
1 −

(
iB

2πβ

)2

2
, (10)

where k is an integer fixed by the normalized external ap-
plied flux value (Ψex = 2k+1

2 ). In the iB �= 0 case, however,
these susceptibility values are isolated points in the χ vs.
Ψex curves.

As before, if we consider the case for n odd, we notice
a complete identical behaviour of the system up to first
order in the parameter β.

3 Numerical results

In order to make a comparison between the above analyti-
cal results and numerical results coming from the complete
SQUID model, we have simulated the complete dynamics
of a conventional d.c. SQUID within the RSJ model. In
particular, we have computed the time average of the mag-
netic susceptibility χ as a function of applied magnetic flux
by starting from zero-field cooled (ZFC) conditions (Ψ = 0
at Ψex = 0) and by gradually increasing (decreasing) Ψex

up to a maximum (minimum) value. In Figure 2a and 2b
we report χ vs. Ψex curves for β = 0.01 and respectively
for iB = 0 and iB = 0.8. We notice that the system shows
the analytic behaviour reported in equations (6) and (8),
when it is in the zero-voltage state, while it presents a null
value of the susceptibility (o

(
β2

)
) when it is in the run-

ning state. In order to get some information on the limits
of validity of the model, we run a second simulation for
β = 0.05, obtaining the χ vs. Ψex curves for iB = 0 and
iB = 0.8 of Figures 3a, and 3b, respectively. As can be seen
from Figures 3a, 3b, even though the analytical solution
fails for |Ψex| < 1

2 , a good agreement between the numeri-
cal results (obtained for the complete system, without any
approximation) and the analytic results of equations (6)
and (8), is attained only for flux values|Ψex| > 1

2 .
Apart from the limits of validity of the analytic ap-

proach, Figures 2a, 2b and 3a, 3b show that the magnetic
field susceptibility of conventional d.c. SQUID’s presents
alternating signs, with the appearance of a paramag-
netic response for well-defined applied flux intervals. This

Fig. 2. (a) χ vs. Ψex curves for iB = 0 and β = 0.01.
The full line represents the analytical solution given in equa-
tion (6) in the text, while the dots are obtained by means of
numerical integration of the complete dynamical equations of
a conventional d.c. SQUID. (b) χ vs. Ψex curves for iB = 0.8
and β = 0.01. The full line represents the analytical solution
given in equation (8) in the text, while the dots are obtained
by means of numerical integration of the complete dynamical
equations of a conventional d.c. SQUID.

should not be considered a surprising feature, given that
we are dealing with a weakly-coupled multiply-connected
superconducting structure. Indeed, it can be shown that
even type I superconductors, presenting a multiply con-
nected topology, may show paramagnetic response for
some interval of the applied magnetic flux [8]. We now turn
our attention to the bistability of the stationary solutions
for the average phase difference ϕA found in the previous
section. This feature does not appear in Figures 2a, 2b and
3a, 3b, since we have chosen to start from a ZFC state of
the system and have raised (lowered) the field up to its
maximum (minimum) value only in one direction. There-
fore, in order to make this feature explicitly evident, in
Figures 4a, 4b we show the magnetic behaviour of the sys-
tem in the bistability region close to Ψex = 3

2 , for β = 0.01
and iB = 0. In Figures 4a and 4b, obtained for n = 0 and
n = 1, respectively, the magnetic susceptibility attains
the same values, following the same hysteretic paths. This
confirms the similarity of the magnetic behaviour of this
system at different values of n.
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Fig. 3. (a) χ vs. Ψex curves for iB = 0 and β = 0.05.
The full line represents the analytical solution given in equa-
tion (6) in the text, while the dots are obtained by means of
numerical integration of the complete dynamical equations of
a conventional d.c. SQUID. (b) χ vs. Ψex curves for iB = 0.8
and β = 0.05. The full line represents the analytical solution
given in equation (8) in the text, while the dots are obtained
by means of numerical integration of the complete dynamical
equations of a conventional d.c. SQUID.

4 Conclusions

We studied, by means of the reduced two-junction inter-
ferometer model, the magnetic susceptibility χ of conven-
tional d.c. SQUID’s. Under the assumption that the pa-
rameter β is not identically equal to zero, we find an ap-
proximated analytic expression for χ to first order in β.
For a conventional d.c. SQUID there exists a very low
field region in which the magnetic response of the system
is always diamagnetic. The extension ∆Ψex of the Ψex in-
terval centred at zero in which the response is diamagnetic
depends on iB(iB < 2) as follows:

∆Ψex =
2
π

cos−1

(
iB
2

)
.

Outside this region there exists an alternating behaviour
between paramagnetic and diamagnetic responses. On the
other hand, the system shows hysteretic behaviour in in-
tervals of Ψex centred on semi-integer values with ampli-
tude of the order of β.

Fig. 4. (a) χ vs. Ψex curves for n = 0, iB = 0 and β = 0.01 in
the vicinity of Ψex = 3

2
. Triangles represent magnetic states for

increasing field, while black boxes represent magnetic states
for decreasing field. (b) χ vs. Ψex curves for n = 1, iB = 0
and β = 0.01 in the vicinity of Ψex = 3

2
. Triangles represent

magnetic states for increasing field, while black boxes represent
magnetic states for decreasing field.

The richness of the magnetic response of this system
appears only when the β = 0 hypothesis is removed. The
analysis carried out, however, is only valid to first order
in β, so that further studies need to be done in order to
study the magnetic behaviour of the system at arbitrary
values of this parameter.
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